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Introduction

Model choice and model comparison

Choice between models

Several models available for the same observation

Mi : x ∼ fi(x|θi), i ∈ I

where I can be finite or infinite
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Bayesian resolution
Probabilise the entire model/parameter space

allocate probabilities pi to all models Mi

define priors πi(θi) for each parameter space Θi

compute

P(Mi|x) =
pi

∫
Θi

fi(x|θi)πi(θi)dθi∑
j

pj

∫
Θj

fj(x|θj)πj(θj)dθj

take largest P(Mi|x) to determine “best” model,
or use averaged predictive∑

j

P(Mj |x)
∫

Θj

fj(x′|θj , x)πj(θj |x)dθj
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Bayes factor

Definition (Bayes factors)

For models M1 and M2

B12 =

∫
Θ1

f1(x|θ1)π1(θ1)dθ1∫
Θ2

f2(x|θ2)π2(θ2)dθ2

[Jeffreys, 1939]
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Outside decision-theoretic environment:

Bayesian/marginal equivalent to the likelihood ratio

Jeffreys’ scale of evidence:

if log10(B12) between 0 and 0.5, evidence against M2 weak,
if log10(B12) 0.5 and 1, evidence substantial,
if log10(B12) 1 and 2, evidence strong and
if log10(B12) above 2, evidence decisive

Requires the computation of the marginal/evidence under
both hypotheses/models



On some computational methods for Bayesian model choice

Introduction

Evidence

All these problems end up with a similar quantity, the evidence

Zk =
∫

Θk

πk(θk)fk(x|θk) dθk ,

the marginal likelihood
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Importance sampling solutions

Approximating Zk from posterior samples
Bridge sampling

If
π1(θ1|x) ∝ π̃1(θ1|x)
π2(θ2|x) ∝ π̃2(θ2|x)

on same space Θ1 = Θ2, then

B12 ≈
1
n

n∑
i=1

π̃1(θi|x)
π̃2(θi|x)

θi ∼ π2(·|x)

[Gelman & Meng, 1998; Chen, Shao & Ibrahim, 2000]
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Importance sampling solutions

In addition

B12 =

∫
π̃1(θ|x)α(θ)π2(θ|x)dθ∫
π̃2(θ|x)α(θ)π1(θ|x)dθ

∀ α(·)

≈

1
n2

n2∑
i=1

π̃1(θ2i|x)α(θ2i)

1
n1

n1∑
i=1

π̃2(θ1i|x)α(θ1i)
θji ∼ πj(·|x)
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Importance sampling solutions

Approximating Zk from posterior samples
Harmonic means

Use of the identity

E
[

ϕ(θk)
πk(θk)fk(x|θk)

|x
]

=
∫

ϕ(θk)
πk(θk)fk(x|θk)

πk(θk)fk(x|θk)
Zk

dθk

=
1
Zk

no matter what the proposal ϕ(θk) is
[Gelfand & Dey, 1994; Bartolucci et al., 2006]
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Importance sampling solutions

Harmonic mean type: Constraint opposed to usual importance
sampling constraints: ϕ(θ) must have lighter (rather than fatter)
tails than π(θ)L(θ) for the approximation

Ẑk = 1

/
1
T

T∑
t=1

ϕ
(
θ

(t)
k

)
πk

(
θ

(t)
k

)
fk

(
x|θ(t)

k

)
to have a finite variance
E.g., use finite support kernels (like the Epanechnikov kernel) for ϕ
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Importance sampling solutions

Standard importance sampling

Compare Ẑk with standard importance sampling approximation

Z̃k =
1
T

T∑
t=1

π
(
θ

(t)
k

)
fk

(
x|θ(t)

k

)
ϕ(θ(t)

k )

where the θ
(t)
k ’s are generated from the density ϕ(·) (with fatter

tails this time)
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Importance sampling solutions

Approximating Zk using a mixture representation

Design a specific mixture for simulation purposes, with density

ϕ̃(θk) ∝ ω1πk(θk)fk(x|θk) + ϕ(θk) ,

where ϕ(θk) is arbitrary (but normalised)
Note: ω1 is not a probability weight
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Importance sampling solutions

Corresponding MCMC (=Gibbs) sampler

At iteration t
1 Take δ(t) = 1 with probability

ω1πk(θ(t−1)
k )fk(x|θ(t−1)

k )
/(

ω1πk(θ(t−1)
k )fk(x|θ(t−1)

k ) + ϕ(θ(t−1)
k )

)
and δ(t) = 2 otherwise;

2 If δ(t) = 1, generate θ
(t)
k ∼ MCMC(θ(t−1)

k , ·) where
MCMC(θ, θ′) denotes an arbitrary MCMC kernel associated
with the posterior πk(θ|x) ∝ πk(θ)fk(x|θ);

3 If δ(t) = 2, generate θ
(t)
k ∼ ϕ(·) independently
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Importance sampling solutions

Rao-Blackwellised estimate

ξ̂ =
1
T

T∑
t=1

ω1πk(θ
(t)
k )fk(x|θ

(t)
k )
/
ω1πk(θ

(t)
k )fk(x|θ

(t)
k ) + ϕ(θ(t)

k ) ,

converges to ω1Zk/{ω1Zk + 1}
Deduce Z̃k from

ω1Z̃k/{ω1Z̃k + 1} = ξ̂
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Importance sampling solutions

Chib’s representation

Direct application of Bayes’ theorem: given x ∼ fk(x|θk) and
θk ∼ πk(θk),

Zk =
fk(x|θk)πk(θk)

πk(θk|x)
,

Use of an approximation

Ẑk =
fk(x|θ∗k)πk(θ∗k)

π̂k(θ∗k|x)
.
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Importance sampling solutions

For missing variable z as in mixture models,

π̂k(θ∗k|x) =
1
T

T∑
t=1

πk(θ∗k|x, z
(t)
k ) ,

where the z
(t)
k ’s are the latent variables simulated by a Gibbs

sampler.
Difficulty caused by [non-]label switching overcome by imposing
symmetry: since

πk(θk|x) = πk(σ(θk)|x) =
1
k!

∑
σ∈S

πk(σ(θk)|x)

for all σ’s in Sk, set of all permutations of {1, . . . , k}, use of

π̃k(θ∗k|x) =
1
T k!

∑
σ∈Sk

T∑
t=1

πk(σ(θ∗k)|x, z
(t)
k ) .
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Cross-model solutions

Reversible jump

Idea: Set up a proper measure–theoretic framework for designing
moves between models Mk

[Green, 1995]
Create a reversible kernel K on H =

⋃
k{k} ×Θk such that∫

A

∫
B

K(x, dy)π(x)dx =
∫
B

∫
A

K(y, dx)π(y)dy

for the invariant density π [x is of the form (k, θ(k))]
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Cross-model solutions

For a move between two models, M1 and M2, the Markov chain
being in state θ1 ∈M1, denote by K1→2(θ1, dθ) and K2→1(θ2, dθ)
the corresponding kernels, under the detailed balance condition

π(dθ1) K1→2(θ1, dθ) = π(dθ2) K2→1(θ2, dθ) ,

and take, wlog, dim(M2) > dim(M1).
Proposal expressed as

θ2 = Ψ1→2(θ1, v1→2)

where v1→2 is a random variable of dimension
dim(M2)− dim(M1), generated as

v1→2 ∼ ϕ1→2(v1→2) .
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Cross-model solutions

In this case, q1→2(θ1, dθ2) has density

ϕ1→2(v1→2)
∣∣∣∣∂Ψ1→2(θ1, v1→2)

∂(θ1, v1→2)

∣∣∣∣−1

,

by the Jacobian rule.
If probability $1→2 of choosing move to M2 while in M1,
acceptance probability reduces to

α(θ1, v1→2) = 1∧ π(M2, θ2)$2→1

π(M1, θ1)$1→2 ϕ1→2(v1→2)

∣∣∣∣∂Ψ1→2(θ1, v1→2)
∂(θ1, v1→2)

∣∣∣∣ .
c©Difficult calibration
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Cross-model solutions

Saturation schemes
Saturation of the parameter space H =

⋃
k{k} ×Θk by creating

a model index M
pseudo-priors πj(θj |M = k) for j 6= k

[Carlin & Chib, 1995]

Validation by

P(M = k|x) =
∫

P(M = k|x, θ)π(θ|x)dθ = Zk

where the (marginal) posterior is

π(θ|x) =
D∑
k=1

P(θ,M = k|x)

=
D∑
k=1

pk Zk πk(θk|x)
∏
j 6=k

πj(θj |M = k) .
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Cross-model solutions

Run a Markov chain (M (t), θ
(t)
1 , . . . , θ

(t)
D ) with stationary

distribution P(θ,M = k|x) by

1 Pick M (t) = k with probability P(θ(t−1),M = k|x)

2 Generate θ
(t−1)
k from the posterior πk(θk|x) [or MCMC step]

3 Generate θ
(t−1)
j (j 6= k) from the pseudo-prior πj(θj |M = k)

Approximate P(M = k|x) = Zk by

Žk ∝ pk
T∑
t=1

fk(x|θ
(t)
k )πk(θ

(t)
k )
∏
j 6=k

πj(θ
(t)
j |M = k)

/ D∑
`=1

%` f`(x|θ
(t)
` )π`(θ

(t)
` )
∏
j 6=`

πj(θ
(t)
j |M = `)
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Implementation errors

Scott’s (2002) mistake

Suggest estimating P(M = k|y) by

Z̃k ∝ pk
T∑
t=1

fk(y|θ(t)
k )
/ D∑

j=1

%j fj(y|θ(t)
j )

 ,

simultaneously and independently, D MCMC chains

(θ(t)
k )t , 1 ≤ k ≤ D ,

with stationary distributions πk(θk|y)
instead of above joint
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Implementation errors

Congdon’s (2006) mistake

Using flat pseudo-priors [prohibited!], uses instead

Ẑk ∝ pk
T∑
t=1

fk(y|θ(t)
k )πk(θ

(t)
k )
/ D∑

j=1

%j fj(y|θ(t)
j )πj(θ

(t)
j )

 ,

where again the θ
(t)
k ’s are MCMC chains with stationary

distributions πk(θk|y)
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Implementation errors

Examples (1)

Example (Model choice (2))

Normal model M1 : y|θ ∼ N (θ, 1) with θ ∼ N (0, 1) vs. normal
model M2 : y|θ ∼ N (θ, 1) with θ ∼ N (5, 1)

Comparison of both

approximations with

P(M = 1|y): Scott’s (2002)

(green and mixed dashes) and

Congdon’s (2006) (brown and

long dashes) (N = 104

simulations).
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Implementation errors

Examples (2)

Example (Model choice (3))

Model M1 : y|ω ∼ N (0, 1/ω) with ω ∼ Exp(a) vs.
M2 : exp(y)|λ ∼ Exp(λ) with λ ∼ Exp(b).

Comparison of Congdon’s (2006)

(brown and dashed lines) with

P(M = 1|y) when (a, b) is equal

to (.24, 8.9), (.56, .7), (4.1, .46)
and (.98, .081), resp. (N = 104

simulations).

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y


	Introduction
	Importance sampling solutions
	Cross-model solutions
	Implementation errors

