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Model choice and model comparison

Several models available for the same observation

M; :x ~ f,(m|€z), 1€J

where J can be finite or infinite




Bayesian resolution
Probabilise the entire model/parameter space
o allocate probabilities p; to all models 901;
o define priors 7;(6;) for each parameter space O;
o compute

pi | fi(x]0;)m;(6;)db;

PO |z) = &
ij/evfj(ml%)ﬂj(ej)d@j

o take largest P(91;|z) to determine “best” model,
or use averaged predictive

Ej:P(fmjlw) /. 0521 010



Bayes factor

For models 21 and My

f1($|91)7{'1(91)d01
Bjp = T
12 —

A fa(x|62)m2(02)dO2

[Jeffreys, 1939]




Outside decision-theoretic environment:

o Bayesian/marginal equivalent to the likelihood ratio

o Jeffreys' scale of evidence:

if log;o(B12) between 0 and 0.5, evidence against My weak,
if logyo(Bi12) 0.5 and 1, evidence substantial,

if log;0(B12) 1 and 2, evidence strong and

if log;o(B12) above 2, evidence decisive

© 06 0 o

o Requires the computation of the marginal/evidence under
both hypotheses/models



Evidence

All these problems end up with a similar quantity, the evidence
3= / 7k (Ok) fr(2]0k) dOs
O

the marginal likelihood



Approximating 3, from posterior samples
Bridge sampling

7T1(91’£E) X ﬁ1(91’$)
7T2(92|SC) XX 77('2(92|SC)

on same space O = Oy, then

1 - 77'1(091‘|£L’)
B ~ — = 0 ~ Tol-|x

[Gelman & Meng, 1998; Chen, Shao & lIbrahim, 2000]



In addition

/ 71 (0]2)a(6)ma (6]2)d0
/ #2(0)2)a(0)m1 (0]2)d0

By = v a()

—2771921|96 (62;)
—Zﬂ291z|3€ (01:)

Oji ~ m;(-|x)

Q



Approximating 3, from posterior samples
Harmonic means

Use of the identity

©(0) _ ©(0) 7k (Or) fr.(2|0k)
g 7k (Ok) fr.(2|0k) lx] B /Wk(Hk)fk(wlek) 3 9B

1
3k
no matter what the proposal ¢(0y) is
[Gelfand & Dey, 1994; Bartolucci et al., 2006]



Harmonic mean type: Constraint opposed to usual importance
sampling constraints: ¢(0) must have lighter (rather than fatter)
tails than 7(0)L(6) for the approximation

VeSS o ()

T omn (9,(:)) Tk ($|9;(:))

to have a finite variance
E.g., use finite support kernels (like the Epanechnikov kernel) for ¢



Standard importance sampling

Compare 3; with standard importance sampling approximation

Ly

a(t))

'ﬂ |

where the 0,(:)'5 are generated from the density ¢(-) (with fatter
tails this time)



Approximating 3 using a mixture representation

Design a specific mixture for simulation purposes, with density

(k) o< wimk(Ok) fi(w|0k) + 0 (Ok)

where p(6y,) is arbitrary (but normalised)
Note: wy is not a probability weight
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L Importance sampling solutions

Corresponding MCMC (=Gibbs) sampler
At iteration ¢
@ Take 6 =1 with probability

wrme(0F ) flalof =) / (8 ~) Sl ™) + o6 ))

and 6() = 2 otherwise;

@ If 60 =1, generate 9,(:) ~ l\/ICI\/IC(G,(ctfl), -) where
MCMC(0, ") denotes an arbitrary MCMC kernel associated
with the posterior 7 (6|z) o< 7k (0) fr.(x|6);

@ If 6 =2, generate 9,(:) ~ ¢(+) independently




Rao-Blackwellised estimate
T
o 1
é= 1 L eam1Ae0) im0 ielo) + o6,
t=1

converges to w13k/{w13k + 1}
Deduce 3; from

wlgg/{wlé\; +1}=¢



Chib's representation

Direct application of Bayes' theorem: given x ~ fi(x|6x) and

O ~ mi(Ok),
3, — Je(@lf) mr(0%)
: m(Oklz)

Use of an approximation

= _ Ju(=]0F) T (65)
(0%



For missing variable z as in mixture models,

7'('k eklx Zﬂ'k 9k|$ Z ,

where the z,it)’

sampler.
Difficulty caused by [non-]label switching overcome by imposing
symmetry: since

7rk(9k|x) =7Tk( Hk |JI k' Z 7Tk 9k |.’L‘

ceS

s are the latent variables simulated by a Gibbs

for all o's in Sy, set of all permutations of {1,...,k}, use of

Th(05]2) = Tk' 3 Zwk o (67)|z, 2"y .

ceS, t=1



Reversible jump

Idea: Set up a proper measure—theoretic framework for designing

moves between models Dy,
[Green, 1995]

Create a reversible kernel £ on § = J, {k} X © such that

A[Bﬁ(x’dy)w(x)dxz/B/Aﬁ(yadw)ﬂ(y)dy

for the invariant density 7 [z is of the form (k, ()]
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I—Cross-model solutions

For a move between two models, 9t; and 915, the Markov chain
being in state 6, € My, denote by K1 _,2(61,db) and Ka_.1 (62, dH)
the corresponding kernels, under the detailed balance condition

m(dfy) R1—2(01,d0) = w(dba) Ra—1 (02, d0)

and take, wlog, dim(9t) > dim ().
Proposal expressed as

Oy = U1_5(01,v1-2)

where v1_,9 is a random variable of dimension
dim(9My) — dim (91 ), generated as

V1—2 ~ @1%2(171—»2) .



In this case, q12(01,df2) has density

0V1_2(01,v1-2)
(61, v1-2)

P12 (Ul—>2)

by the Jacobian rule.
If probability @i _,o of choosing move to s while in 914,
acceptance probability reduces to

w(Ma, O2) wa_1 ’ OU1_2(01,v1-2)
(M1, 01) w12 P1-2(v1-2) (01, v1-2)

©Difficult calibration

O1,v1-2) = 1A
a(f1,v1-2) -



Saturation schemes

Saturation of the parameter space $ = (J,{k} x O} by creating
o a model index M
o pseudo-priors m;(0;|M = k) for j # k
[Carlin & Chib, 1995]

Validation by
P(M = klz) = / P(M = k|, 0)(0]2)d0 = 3

where the (marginal) posterior is

)

m(6z) = > P(0, M = k|x)
k=1

I
NE

pi 3k (Oklx) [ ] m5(0;1M = k).
1 Ak

el
Il



Run a Markov chain (M(t),ﬁgt), . ,Hg)) with stationary
distribution P(0, M = k|z) by

@ Pick M® =k with probability P(0*~D M = k|z)

@ Generate 9,(;_1) from the posterior 7 (0x|z) [or MCMC step]

@ Generate Hj(-t_l) (j # k) from the pseudo-prior m;(0;|M = k)
Approximate P(M = k|z) = 3 by

T
35 o Pr Z Tl m(6) T 7568 101 = k)
ik

/thzfz ([0 (t))Hﬁj(9§t)|M=£)

it



Scott's (2002) mistake

Suggest estimating P(M = k|y) b

T
ézcxpkz{fk(ye“ /Zgj £i(wle)) }
t=1

simultaneously and independently, D MCMC chains
@), 1<k<D,

with stationary distributions 7 (0x|y)
instead of above joint



Congdon's (2006) mistake

Using flat pseudo-priors [prohibited!], uses instead

3 ocpkz {fk (yl6y)m(0 / Z@J £i(wlo" )m(e“))}

where again the 9,(:)'5 are MCMC chains with stationary

distributions 7y (0 |y)
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I—Implementation errors

Example (Model choice (2))

Normal model 9 : y|6 ~ N(6,1) with 6 ~ N(0,1) vs. normal
model My : y|0 ~ N (0,1) with 6 ~ N (5,1)

Comparison of both
approximations with

P(M = 1ly): Scott’s (2002)
(green and mixed dashes) and
Congdon’s (2006) (brown and )
long dashes) (N = 10* \
simulations).
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I—Implementation errors

Example (Model choice (3))

Model M : ylw ~ N(0,1/w) with w ~ Exp(a) vs.
My : exp(y)|A ~ Exp(A) with X ~ Exp(b).

Comparison of Congdon's (2006)
(brown and dashed lines) with

P(M = 1|y) when (a,b) is equal
to (.24,8.9), (.56,.7), (4.1,.46)

and (.98,.081), resp. (N = 10*

simulations).
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