On some computational methods for Bayesian model choice

Jean-Michel Marin

Université Montpellier 2

October 20, 2008

Outline

1 Introduction

(2) Importance sampling solutions

4 Implementation errors

Introduction

Model choice and model comparison

Choice between models

Several models available for the same observation

$$\mathfrak{M}_i: x \sim f_i(x|\theta_i), \qquad i \in \mathfrak{I}$$

where $\ensuremath{\mathfrak{I}}$ can be finite or infinite

Introduction

Bayesian resolution

Probabilise the entire model/parameter space

- allocate probabilities p_i to all models \mathfrak{M}_i
- define priors $\pi_i(\theta_i)$ for each parameter space Θ_i
- compute

$$\mathbb{P}(\mathfrak{M}_i|x) = \frac{p_i \int_{\Theta_i} f_i(x|\theta_i) \pi_i(\theta_i) \mathrm{d}\theta_i}{\sum_j p_j \int_{\Theta_j} f_j(x|\theta_j) \pi_j(\theta_j) \mathrm{d}\theta_j}$$

• take largest $\mathbb{P}(\mathfrak{M}_i|x)$ to determine "best" model, or use averaged predictive

$$\sum_{j} \mathbb{P}(\mathfrak{M}_{j}|x) \int_{\Theta_{j}} f_{j}(x'|\theta_{j}, x) \pi_{j}(\theta_{j}|x) \mathrm{d}\theta_{j}$$

Introduction

Bayes factor

Definition (Bayes factors) For models \mathfrak{M}_1 and \mathfrak{M}_2

$$B_{12} = \frac{\int_{\Theta_1} f_1(x|\theta_1)\pi_1(\theta_1)\mathsf{d}\theta_1}{\int_{\Theta_2} f_2(x|\theta_2)\pi_2(\theta_2)\mathsf{d}\theta_2}$$

[Jeffreys, 1939]

- Introduction

Outside decision-theoretic environment:

- Bayesian/marginal equivalent to the likelihood ratio
- Jeffreys' scale of evidence:
 - ${}_{\bullet}$ if $\log_{10}(B_{12})$ between 0 and 0.5, evidence against \mathfrak{M}_2 weak,
 - if $\log_{10}(B_{12}) \ 0.5$ and 1, evidence substantial,
 - if $\log_{10}(B_{12})$ 1 and 2, evidence *strong* and
 - if $\log_{10}(B_{12})$ above 2, evidence *decisive*
- Requires the computation of the marginal/evidence under both hypotheses/models

Introduction

Evidence

All these problems end up with a similar quantity, the evidence

$$\mathfrak{Z}_k = \int_{\Theta_k} \pi_k(heta_k) f_k(x| heta_k) \, \mathrm{d} heta_k \, ,$$

the marginal likelihood

Importance sampling solutions

Approximating \mathfrak{Z}_k from posterior samples Bridge sampling

lf

$$\begin{array}{rcl} \pi_1(\theta_1|x) & \propto & \tilde{\pi}_1(\theta_1|x) \\ \pi_2(\theta_2|x) & \propto & \tilde{\pi}_2(\theta_2|x) \end{array}$$

on same space $\Theta_1 = \Theta_2$, then

$$B_{12} \approx \frac{1}{n} \sum_{i=1}^{n} \frac{\tilde{\pi}_1(\theta_i | x)}{\tilde{\pi}_2(\theta_i | x)} \qquad \theta_i \sim \pi_2(\cdot | x)$$

[Gelman & Meng, 1998; Chen, Shao & Ibrahim, 2000]

Importance sampling solutions

In addition

$$B_{12} = \frac{\int \tilde{\pi}_1(\theta|x)\alpha(\theta)\pi_2(\theta|x)d\theta}{\int \tilde{\pi}_2(\theta|x)\alpha(\theta)\pi_1(\theta|x)d\theta} \quad \forall \alpha(\cdot)$$
$$\approx \frac{\frac{1}{n_2}\sum_{i=1}^{n_2}\tilde{\pi}_1(\theta_{2i}|x)\alpha(\theta_{2i})}{\frac{1}{n_1}\sum_{i=1}^{n_1}\tilde{\pi}_2(\theta_{1i}|x)\alpha(\theta_{1i})} \quad \theta_{ji} \sim \pi_j(\cdot|x)$$

Importance sampling solutions

Approximating \mathfrak{Z}_k from posterior samples Harmonic means

Use of the identity

$$\mathbb{E} \left[\frac{\varphi(\theta_k)}{\pi_k(\theta_k) f_k(x|\theta_k)} \, |x \right] = \int \frac{\varphi(\theta_k)}{\pi_k(\theta_k) f_k(x|\theta_k)} \, \frac{\pi_k(\theta_k) f_k(x|\theta_k)}{\mathfrak{Z}_k} \, \mathrm{d}\theta_k \\ = \frac{1}{\mathfrak{Z}_k}$$

no matter what the proposal $\varphi(\theta_k)$ is [Gelfand & Dey, 1994; Bartolucci et al., 2006]

Harmonic mean type: Constraint opposed to usual importance sampling constraints: $\varphi(\theta)$ must have lighter (rather than fatter) tails than $\pi(\theta)L(\theta)$ for the approximation

$$\widehat{\mathfrak{Z}_{k}} = 1 \left/ \frac{1}{T} \sum_{t=1}^{T} \frac{\varphi\left(\theta_{k}^{(t)}\right)}{\pi_{k}\left(\theta_{k}^{(t)}\right) f_{k}\left(x|\theta_{k}^{(t)}\right)}\right.$$

to have a finite variance

E.g., use finite support kernels (like the Epanechnikov kernel) for φ

Standard importance sampling

Compare $\widehat{\mathfrak{Z}_k}$ with standard importance sampling approximation

$$\widetilde{\mathfrak{Z}_{k}} = \frac{1}{T} \sum_{t=1}^{T} \frac{\pi\left(\theta_{k}^{(t)}\right) f_{k}\left(x|\theta_{k}^{(t)}\right)}{\varphi(\theta_{k}^{(t)})}$$

where the $\theta_k^{(t)}$'s are generated from the density $\varphi(\cdot)$ (with fatter tails this time)

Approximating \mathfrak{Z}_k using a mixture representation

Design a specific mixture for simulation purposes, with density

$$\tilde{\varphi}(\theta_k) \propto \omega_1 \pi_k(\theta_k) f_k(x|\theta_k) + \varphi(\theta_k) \,,$$

where $\varphi(\theta_k)$ is arbitrary (but normalised) Note: ω_1 is not a probability weight

Importance sampling solutions

Corresponding MCMC (=Gibbs) sampler

At iteration t

1) Take $\delta^{(t)} = 1$ with probability

$$\omega_1 \pi_k(\theta_k^{(t-1)}) f_k(x|\theta_k^{(t-1)}) \Big/ \left(\omega_1 \pi_k(\theta_k^{(t-1)}) f_k(x|\theta_k^{(t-1)}) + \varphi(\theta_k^{(t-1)}) \right)$$

and $\delta^{(t)} = 2$ otherwise;

2 If $\delta^{(t)} = 1$, generate $\theta_k^{(t)} \sim \mathsf{MCMC}(\theta_k^{(t-1)}, \cdot)$ where $\mathsf{MCMC}(\theta, \theta')$ denotes an arbitrary MCMC kernel associated with the posterior $\pi_k(\theta|x) \propto \pi_k(\theta) f_k(x|\theta)$;

3 If
$$\delta^{(t)}=2$$
, generate $heta_k^{(t)}\sim arphi(\cdot)$ independently

Importance sampling solutions

Rao-Blackwellised estimate

$$\hat{\xi} = \frac{1}{T} \sum_{t=1}^{T} \omega_1 \pi_k(\theta_k^{(t)}) f_k(x|\theta_k^{(t)}) \Big/ \omega_1 \pi_k(\theta_k^{(t)}) f_k(x|\theta_k^{(t)}) + \varphi(\theta_k^{(t)}) \,,$$

converges to $\omega_1 \mathfrak{Z}_k / \{\omega_1 \mathfrak{Z}_k + 1\}$ Deduce $\widetilde{\mathfrak{Z}}_k$ from $\omega_1 \widetilde{\mathfrak{Z}}_k / \{\omega_1 \widetilde{\mathfrak{Z}}_k + 1\} = \hat{\xi}$

Chib's representation

Direct application of Bayes' theorem: given $x \sim f_k(x|\theta_k)$ and $\theta_k \sim \pi_k(\theta_k)$,

$$\mathfrak{Z}_k = \frac{f_k(x|\theta_k) \, \pi_k(\theta_k)}{\pi_k(\theta_k|x)} \,,$$

Use of an approximation

$$\widehat{\mathfrak{Z}_k} = \frac{f_k(x|\theta_k^*) \, \pi_k(\theta_k^*)}{\widehat{\pi_k}(\theta_k^*|\mathbf{x})}$$

.

Importance sampling solutions

For missing variable z as in mixture models,

$$\widehat{\pi_k}(\theta_k^*|\mathbf{x}) = \frac{1}{T} \sum_{t=1}^T \pi_k(\theta_k^*|x, z_k^{(t)}),$$

where the $z_k^{(t)}$'s are the latent variables simulated by a Gibbs sampler.

Difficulty caused by [non-]label switching overcome by imposing symmetry: since

$$\pi_k(\theta_k|x) = \pi_k(\sigma(\theta_k)|x) = \frac{1}{k!} \sum_{\sigma \in \mathfrak{S}} \pi_k(\sigma(\theta_k)|x)$$

for all σ 's in \mathfrak{S}_k , set of all permutations of $\{1, \ldots, k\}$, use of

$$\widetilde{\pi_k}(\theta_k^*|x) = \frac{1}{T\,k!} \sum_{\sigma \in \mathfrak{S}_k} \sum_{t=1}^T \pi_k(\sigma(\theta_k^*)|x, z_k^{(t)}) \, .$$

Cross-model solutions

Reversible jump

Idea: Set up a proper measure–theoretic framework for designing moves between models \mathfrak{M}_k

[Green, 1995] Create a **reversible kernel** \mathfrak{K} on $\mathfrak{H} = \bigcup_k \{k\} \times \Theta_k$ such that

$$\int_A \int_B \mathfrak{K}(x,dy) \pi(x) dx = \int_B \int_A \mathfrak{K}(y,dx) \pi(y) dy$$

for the invariant density π [x is of the form $(k, \theta^{(k)})$]

Cross-model solutions

For a move between two models, \mathfrak{M}_1 and \mathfrak{M}_2 , the Markov chain being in state $\theta_1 \in \mathfrak{M}_1$, denote by $\mathfrak{K}_{1\to 2}(\theta_1, d\theta)$ and $\mathfrak{K}_{2\to 1}(\theta_2, d\theta)$ the corresponding kernels, under the *detailed balance condition*

$$\pi(d\theta_1)\,\mathfrak{K}_{1\to 2}(\theta_1,d\theta) = \pi(d\theta_2)\,\mathfrak{K}_{2\to 1}(\theta_2,d\theta)\,,$$

and take, wlog, $\dim(\mathfrak{M}_2) > \dim(\mathfrak{M}_1)$. Proposal expressed as

$$\theta_2 = \Psi_{1 \to 2}(\theta_1, v_{1 \to 2})$$

where $v_{1\rightarrow 2}$ is a random variable of dimension $\dim(\mathfrak{M}_2) - \dim(\mathfrak{M}_1)$, generated as

$$v_{1\to 2} \sim \varphi_{1\to 2}(v_{1\to 2}).$$

Cross-model solutions

In this case, $q_{1\rightarrow 2}(\theta_1, d\theta_2)$ has density

$$\varphi_{1\to 2}(v_{1\to 2}) \left| \frac{\partial \Psi_{1\to 2}(\theta_1, v_{1\to 2})}{\partial(\theta_1, v_{1\to 2})} \right|^{-1},$$

by the Jacobian rule. If probability $\varpi_{1\to 2}$ of choosing move to \mathfrak{M}_2 while in \mathfrak{M}_1 , acceptance probability reduces to

$$\alpha(\theta_1, v_{1 \to 2}) = 1 \wedge \frac{\pi(\mathfrak{M}_2, \theta_2) \, \varpi_{2 \to 1}}{\pi(\mathfrak{M}_1, \theta_1) \, \varpi_{1 \to 2} \, \varphi_{1 \to 2}(v_{1 \to 2})} \left| \frac{\partial \Psi_{1 \to 2}(\theta_1, v_{1 \to 2})}{\partial(\theta_1, v_{1 \to 2})} \right|$$

©Difficult calibration

Cross-model solutions

Saturation schemes

Saturation of the parameter space $\mathfrak{H} = \bigcup_k \{k\} \times \Theta_k$ by creating

- ${\ensuremath{\, \bullet \,}}$ a model index M
- pseudo-priors $\pi_j(\theta_j|M=k)$ for $j \neq k$

[Carlin & Chib, 1995]

Validation by

$$\mathbb{P}(M=k|x) = \int \mathbb{P}(M=k|x,\theta) \pi(\theta|x) \mathrm{d}\theta = \mathfrak{Z}_k$$

where the (marginal) posterior is

$$\pi(\theta|x) = \sum_{k=1}^{D} \mathbb{P}(\theta, M = k|x)$$
$$= \sum_{k=1}^{D} p_k \mathfrak{Z}_k \pi_k(\theta_k|x) \prod_{j \neq k} \pi_j(\theta_j|M = k).$$

Cross-model solutions

Run a Markov chain $(M^{(t)}, \theta_1^{(t)}, \dots, \theta_D^{(t)})$ with stationary distribution $\mathbb{P}(\theta, M = k|x)$ by Pick $M^{(t)} = k$ with probability $\mathbb{P}(\theta^{(t-1)}, M = k|x)$ Generate $\theta_k^{(t-1)}$ from the posterior $\pi_k(\theta_k|x)$ [or MCMC step] Generate $\theta_j^{(t-1)}$ $(j \neq k)$ from the pseudo-prior $\pi_j(\theta_j|M = k)$ Approximate $\mathbb{P}(M = k|x) = \mathfrak{Z}_k$ by

$$\begin{split} \check{\mathfrak{Z}}_k &\propto p_k \sum_{t=1}^T f_k(x|\theta_k^{(t)}) \,\pi_k(\theta_k^{(t)}) \prod_{j \neq k} \pi_j(\theta_j^{(t)}|M=k) \\ & \left/ \sum_{\ell=1}^D \varrho_\ell \,f_\ell(x|\theta_\ell^{(t)}) \,\pi_\ell(\theta_\ell^{(t)}) \prod_{j \neq \ell} \pi_j(\theta_j^{(t)}|M=\ell) \right. \end{split}$$

Implementation errors

Scott's (2002) mistake

Suggest estimating $\mathbb{P}(M=k|y)$ by

$$\widetilde{\mathfrak{Z}_k} \propto p_k \sum_{t=1}^T \left\{ f_k(y|\theta_k^{(t)}) \middle/ \sum_{j=1}^D \varrho_j f_j(y|\theta_j^{(t)}) \right\} \,,$$

simultaneously and independently, D MCMC chains

$$(\theta_k^{(t)})_t, \qquad 1 \le k \le D,$$

with stationary distributions $\pi_k(\theta_k|y)$ instead of above joint

Implementation errors

Congdon's (2006) mistake

Using flat pseudo-priors [prohibited!], uses instead

$$\widehat{\mathfrak{Z}_k} \propto p_k \sum_{t=1}^T \left\{ f_k(y|\theta_k^{(t)}) \pi_k(\theta_k^{(t)}) \middle/ \sum_{j=1}^D \varrho_j f_j(y|\theta_j^{(t)}) \pi_j(\theta_j^{(t)}) \right\} \,,$$

where again the $\theta_k^{(t)}$'s are MCMC chains with stationary distributions $\pi_k(\theta_k|y)$

Implementation errors

Examples (1)

Example (Model choice (2))

Normal model $\mathfrak{M}_1: y|\theta \sim \mathcal{N}(\theta, 1)$ with $\theta \sim \mathcal{N}(0, 1)$ vs. normal model $\mathfrak{M}_2: y|\theta \sim \mathcal{N}(\theta, 1)$ with $\theta \sim \mathcal{N}(5, 1)$

Comparison of both approximations with $\mathbb{P}(M=1|y)$: Scott's (2002) (green and mixed dashes) and Congdon's (2006) (brown and long dashes) ($N=10^4$ simulations).

Implementation errors

Examples (2)

Example (Model choice (3))

Model \mathfrak{M}_1 : $y|\omega \sim \mathcal{N}(0, 1/\omega)$ with $\omega \sim \mathcal{E}xp(a)$ vs. \mathfrak{M}_2 : $\exp(y)|\lambda \sim \mathcal{E}xp(\lambda)$ with $\lambda \sim \mathcal{E}xp(b)$.

Comparison of Congdon's (2006) (brown and dashed lines) with $\mathbb{P}(M = 1|y)$ when (a, b) is equal to (.24, 8.9), (.56, .7), (4.1, .46)and (.98, .081), resp. $(N = 10^4$ simulations).

