Chapitre 1

Généralités sur les fonctions

Sommaire

1.1	Rappels de Seconde sur la notion de fonction					
	1.1.1 Définition, vocabulaire et notations					
	1.1.2 Ensemble de définition					
	1.1.3 Courbe représentative					
	1.1.4 Variations d'une fonction					
	1.1.5 Fonctions de référence					
	1.1.6 Quelques fonctions étudiées en Seconde					
1.2	Activités					
1.3	Bilan et compléments					
	1.3.1 Opérations algébriques sur les fonctions					
	1.3.2 Fonctions associées					
	1.3.3 Variations de $f+g$					
	1.3.4 Variations de $f + k$					
	1.3.5 Variations de <i>kf</i>					
1.4	Exercices					

1.1 Rappels de Seconde sur la notion de fonction

Les définitions et propriétés suivantes ont été vues en Seconde aussi les propriétés ne seront pas démontrées.

1.1.1 Définition, vocabulaire et notations

Remarque. f désigne la fonction, f(x) désigne le réel qui est l'image de x par f.

1.1.2 Ensemble de définition

Définition 1.2. L'ensemble des réels possédant une image par une fonction est appelé *ensemble de définition* de la fonction. On le note en général D_f .

1.1.3 Courbe représentative

On veillera à ne pas confondre la fonction et sa représentation graphique.

-

1.1.4 Variations d'une fonction

Définition 1.4. Soit f une fonction définie sur un intervalle I. On dit que

- f est croissante sur I si pour tous réels a et b de I on a:....;
- f est décroissante sur I si pour tous réels a et b de I on a : ;
- f est monotone sur I si

1.1.5 Fonctions de référence

Compléter le tableau 1.1.5, de la présente page, sur le modèle de la deuxième ligne.

TABLE 1.1 - Fonctions de référence - Tableau de l'activité ??

Fonction Définie sur	Variations Variations	Allure de la courbe représentative			
Affine $f(x) = D_f = D_f$					
Carré $f(x) = x^2$ $D_f = \mathbb{R}$	$ \begin{array}{c cccc} x & -\infty & 0 & +\infty \\ \hline f(x) = x^2 & & & & \\ 0 & & & & & \\ \end{array} $	Parabole			
Cube $f(x) = D_f = D_f$					
Inverse $f(x) =$ $D_f =$					

1.1.6 Quelques fonctions étudiées en Seconde

Fonctions polynômes de degré 2 (fonction trinôme)

Définition 1.5. On appelle *fonction polynôme de degré 2*, ou *fonction trinôme*, toute fonction f pouvant s'écrire sous la forme $f(x) = ax^2 + bx + c$ où $a \ne 0$.

La courbe représentative d'une telle fonction est

Première ES – 2008–2009 1.2 Activités

Propriété 1.1. Soit $f(x) = ax^2 + bx + c$ une fonction trinôme. Alors f a les variations résumées dans les tableaux cidessous:

• $Si \, a > 0$:

•
$$Si \ a < 0$$
:

$$x \mid -\infty$$
 $+\infty$

Une telle fonction admet donc un extremum atteint en

Propriété 1.2. Soit $f(x) = ax^2 + bx + c$ une fonction trinôme et \mathcal{C}_f sa courbe représentative. Alors \mathcal{C}_f admet

Fonctions homographiques

Définition 1.6. On appelle *fonction homographique* toute fonction f pouvant s'écrire sous la forme $f(x) = \frac{ax+b}{cx+d}$ où $(c;d) \neq (0;0)$.

La courbe représentative d'une telle fonction est

Propriété 1.3. Soit f une fonction homographique telle que $f(x) = \frac{ax+b}{cx+d}$. Alors f est définie sur.....

1.2 Activités

ACTIVITÉ 1.1 (La fonction racine).

On appelle *fonction racine* la fonction qui à un réel x associe, s'il existe, le réel positif noté \sqrt{x} tel que $(\sqrt{x})^2 = x$.

- 1. Déterminer l'ensemble de définition de la fonction racine.
- 2. À l'aide d'une calculatrice graphique ou d'un grapheur, représenter la courbe de la fonction racine.
- 3. Que peut-on conjecturer quant aux variations de la fonction racine?

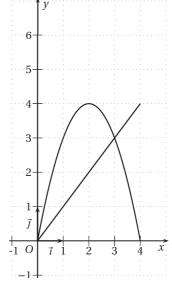
ACTIVITÉ 1.2 (Sommes de fonctions).

Sur la figure ci-contre, on a représenté une fonction affine f et une fonction trinôme g. On appelle h la fonction telle que, pour tout x, h(x) = f(x) + g(x).

- 1. Sur ce même graphique, tracer la courbe représentant la fonction h.
 - Indication : On pourra procèder point par point ou bien s'aider d'un tableau de valeurs du type :

\boldsymbol{x}	0	0,5	1	1,5	2	2,5	3	3,5	4
f(x)									
g(x)									
h(x)									

- 2. Donner, par lecture graphique, les variations de la fonction h.
- 3. Y a-t-il un lien entre les variations des deux fonctions f et g et celles de h?



ACTIVITÉ 1.3 (Sommes de fonctions – Bis).

À l'aide de vos connaissances sur les variations des fonctions affines, complèter les tableaux suivants :

1	Fonctions	f(x) = 2x + 3	g(x) = x - 4	h(x) = f(x) + g(x)
1.	Variations			

2. Fonctions
$$f(x) = -2x + 4$$
 $g(x) = x + 1$ $h(x) = f(x) + g(x)$ Variations

n // noneme

1.3 Bilan et compléments Première ES – 2008–2009

2	Fonctions	f(x) = -2x + 1	g(x) = 2x - 4	h(x) = f(x) + g(x)
٥.	Variations			
4	Fonctions	f(x) = -3x + 2	g(x) = x - 4	h(x) = f(x) + g(x)
4.	Variations			
5	Fonctions	f(x) = -x + 4	g(x) = -2x + 3	h(x) = f(x) + g(x)
Э.	Variations			

Conjecturer le lien qu'il existe entre les variations de f et g et celles de h puis le prouver.

ACTIVITÉ 1.4 (Fonctions associées).

Soit f, g, h, k, l les fonctions définies par :

- $f(x) = \sqrt{x} \text{ pour } x \in \mathbb{R}^+$
- $g(x) = 3 + \sqrt{x} \text{ pour } x \in \mathbb{R}^+$
- $h(x) = \sqrt{x+4} \text{ pour } x \in [-4; +\infty[$

- $k(x) = -\sqrt{x} \text{ pour } x \in \mathbb{R}^+$
- $l(x) = 4\sqrt{x} \text{ pour } x \in \mathbb{R}^+$
- 1. À l'aide d'une calculatrice graphique ou d'un grapheur, tracer la courbe représentative de f puis celle de g.
- 2. Décrire la transformation permettant de passer de la courbe de f à celle de g en précisant ses caractéristiques si cette transformation est une transformation usuelle (symétrie, etc.).
- 3. Mêmes questions en remplaçant g par chacune des autres fonctions.

1.3 Bilan et compléments

1.3.1 Opérations algébriques sur les fonctions

De la même manière qu'on peut ajouter, multiplier, diviser, etc. des nombres, on peut ajouter, multiplier, diviser, etc. des fonctions.

Définition 1.7. Soit f et g deux fonctions définies au moins sur D et k un réel. Le tableau suivant regroupe les opérations sur les fonctions f et g:

Opération	Notation	Définition	Définie pour	
Somme de la fonction f et du réel k	f + k	(f+k)(x) = f(x) + k	v.c.D.	
Produit de la fonction f et du réel k	kf	(kf)(x) = kf(x)	$x \in D_f$	
Somme des fonctions f et g	f+g	(f+g)(x) = f(x) + g(x)		
Différence des fonctions f et g	f-g	(f-g)(x) = f(x) - g(x)	$x \in D_f \cap D_g$	
Produit des fonctions f et g	fg	$(fg)(x) = f(x) \times g(x)$		
Quotient des fonctions f et g	$\frac{f}{g}$	$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$	$x \in D_f \cap D_g \text{ et } g(x) \neq 0$	

1.3.2 Fonctions associées

Définition 1.8. Soit f une fonction définie sur D et k un réel.

On appelle fonctions associées à f les fonctions : $x \mapsto f(x) + k$ $x \mapsto f(x+k)$ $x \mapsto kf(x)$

Remarque. Ces fonctions ne sont en général pas définies sur le même ensemble de définition que f.

Propriété 1.4. Soit f une fonction définie sur D et k un réel et $\mathscr E$ sa courbe dans un repère $(O; \vec{\imath}, \vec{\jmath})$.

- La courbe de f+k s'obtient à partir de celle de f par une translation de vecteur $k\vec{j}$
- La courbe de $x \mapsto f(x+k)$ s'obtient à partir de celle de f par une translation de vecteur $-k\vec{\imath}$
- Si (O; ī, j) est orthogonal, la courbe de f s'obtient à partir de celle de f par la symétrie par rapport à l'axe des abscisses

On l'admettra.

1.3.3 Variations de f + g

Propriété 1.5. Soit deux fonctions f et g définies au moins sur un ensemble D.

- Si f et g sont deux fonctions croissantes sur D, alors la fonction f + g est croissante sur D.
- Si f et g sont deux fonctions décroissantes sur D, alors la fonction f+g est décroissante sur D.

Preuve. Voir l'exercice 1.4 ♦

Première ES - 2008-2009 1.4 Exercices

1.3.4 Variations de f + k

Propriété 1.6. Soit f une fonction définie et monotone sur un intervalle I et k un réel. Les fonctions f et f+k ont même sens de variation sur I.

 \Diamond

Preuve. Si f est croissante et a < b, alors $f(a) \le f(b)$. Donc $f(a) + k \le f(b) + k$ donc f + k est aussi croissante. On démontre de la même manière si f est décroissante.

Exemple 1.1. La fonction $f: x \longrightarrow x^2 + 2$ a les mêmes variations que la fonction carrée.

1.3.5 Variations de kf

Propriété 1.7. Soit f une fonction définie et monotone sur D.

- $Si \ k > 0$ alors les fonctions f et k f ont le même sens de variation sur D.
- Si k < 0 alors les fonctions f et kf ont des sens de variation opposés sur D.

Preuve. Voir l'exercice 1.5 ♦

1.4 Exercices

EXERCICE 1.1.

Soient f et g les fonctions définies sur \mathbb{R} par : $f(x) = -x^3 + 4x$ et $g(x) = -x^2 + 4$.

On a tracé sur le graphique 1.1 de la présente page les courbes représentatives de f et de g.

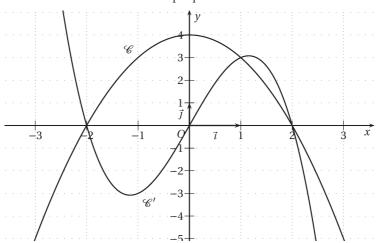


FIGURE 1.1 – Graphique de l'exercice 1.1

- 1. Associer chaque courbe à la fonction qu'elle représente. Justifier succintement.
- 2. Déterminer graphiquement puis par le calcul les solutions des équations :

• f(x) = 0; • g(x) = 0;

- 3. (a) Résoudre graphiquement : $f(x) \le g(x)$.
 - (b) En factorisant d'abord f résoudre par le calcul $f(x) \le g(x)$.

EXERCICE 1.2.

Soit f et g définies sur \mathbb{R} par f(x) = x et $g(x) = x^2$.

- 1. Étudier le signe de $f(x) g(x) = x x^2$.
- 2. En déduire l'intervalle sur lequel on a $f \le g$.

EXERCICE 1.3 (Preuve que la fonction racine est strictement croissante). Soit $0 \le a < b$.

- 1. Que peut-on dire alors de b a?
- 2. Montrer que $b a = (\sqrt{b} + \sqrt{a})(\sqrt{b} \sqrt{a})$.

1.4 Exercices Première ES - 2008-2009

- 3. Que peut-on dire du signe de $\sqrt{b} + \sqrt{a}$? En déduire le signe de $\sqrt{b} \sqrt{a}$.
- 4. En déduire alors le sens de variation de la fonction racine.

EXERCICE 1.4 (Preuve de la propriété 1.5).

Montrer que si a et b sont deux nombres de D tels que a < b et que f et g sont croissantes sur D, alors $(f + g)(a) \le a$ (f+g)(b). Conclure.

Même question lorsque f et g sont décroissantes sur D.

EXERCICE 1.5 (Preuve de la propriété 1.7).

Montrer que si a et b sont deux nombres de D tels que a < b, si f croissante sur D et si k < 0 alors $kf(a) \ge kf(b)$. Conclure.

EXERCICE 1.6. 1. Donner une décomposition de la fonction f définie par $f(x) = (x-3)^2 + 2$ qui permette d'en déduire son sens de variation sur l'intervalle] $-\infty$; 3] et décrire simplement comment obtenir la courbe représentative de f à partir de celle d'une fonction de référence.

2. Mêmes questions pour les fonctions suivantes :

•
$$f(x) = \frac{2}{x-1}$$
;
• $f(x) = (x+1)^3 - 1$;

•
$$f(x) = 3 - (x+1)^2$$
;

•
$$f(x) = 3 - (x+1)^2$$
;
• $f(x) = 3 + \frac{1}{2+x}$;
• $f(x) = 1 - \frac{1}{x-2}$;
• $f(x) = -3\sqrt{x+1}$.

•
$$f(x) = (x+1)^3 - 1$$
;

•
$$f(x) = 3 + \frac{1}{2+x}$$
;

$$f(x) = -3\sqrt{x+1}$$

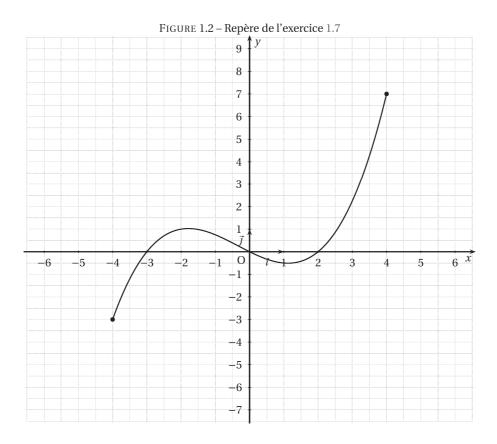
EXERCICE 1.7.

On a représenté sur la figure de la présente page la courbe d'une fonction f définie sur [-4; 4]. Tracer les courbes des fonctions suivantes :

•
$$u = f + 2$$
;

•
$$v = -f$$
;

•
$$w(x) = f(x+2)$$
.



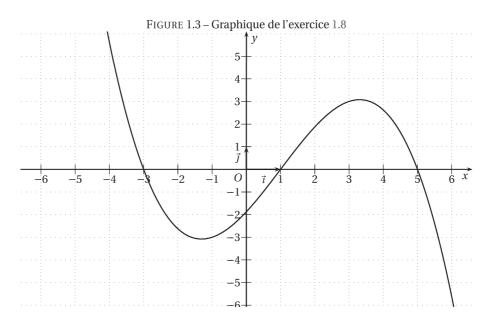
On a représenté sur la figure 1.3 page suivante la courbe d'une fonction f définie sur \mathbb{R} . Y tracer les courbes des fonctions suivantes:

•
$$u = f - 3$$
;

•
$$v = 2f$$
;

•
$$w(x) = f(x-3)$$
;

1.4 Exercices Première ES - 2008-2009



EXERCICE 1.9.

Soient f et g les fonctions définies par : • $f(x) = \frac{2x+1}{x}$;

•
$$f(x) = \frac{2x+1}{x}$$
;

•
$$g(x) = \frac{3x-8}{x-3}$$
;

$$h(x) = \frac{2x-9}{x-4}.$$

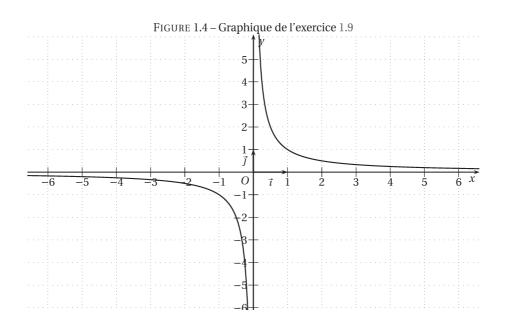
- 1. De quel type de fonction s'agit-il?
- 2. Quels sont leurs ensembles de définition?
- 3. Déterminer les réels a, b, c, d, e et f tels que, pour tout réel x:

•
$$f(x) = a + \frac{b}{x}$$
;

$$g(x) = c + \frac{d}{x - 3}$$

•
$$h(x) = e + \frac{f}{x-4}$$
.

- 4. En déduire les tableaux de variations de ces fonctions.
- 5. À l'aide de transformations simples, tracer les courbes représentatives de ces fonctions à partir de la courbe de la fonction inverse donnée ci-dessous.

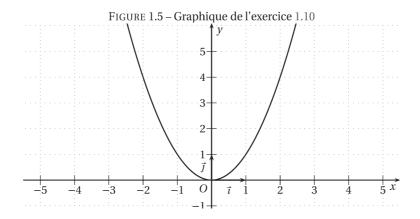


1.4 Exercices Première ES – 2008–2009

EXERCICE 1.10.

Soit f la fonction définie sur \mathbb{R} par : $f(x) = x^2 - 2x + 4$.

- 1. De quel type de fonction s'agit-il?
- 2. Quel est son ensemble de définition?
- 3. (a) Montrer que, pour tout réel x, $f(x) = (x-1)^2 + 3$.
 - (b) En déduire le tableau des variations de f.
 - (c) À l'aide de transformations simples, tracer la courbe représentative de f à partir de la courbe de la fonction carrée donnée ci-dessous.



EXERCICE 1.11.

Soit f la fonction définie sur \mathbb{R} par : $f(x) = -2x^2 - 4x + 1$.

- 1. De quel type de fonction s'agit-il?
- 2. Quel est son ensemble de définition?
- 3. (a) Montrer que, pour tout réel x, $f(x) = -2(x+1)^2 + 3$.
 - (b) En déduire le tableau des variations de f.
 - (c) À l'aide de transformations simples, tracer la courbe représentative de f à partir de la courbe de la fonction carrée donnée ci-dessous.

