E53XPM

Statistique pour la psychologie 3

Examen du 4 novembre 2006

CORRIGÉ

Exercice 1:

1) Notons les événements :

A : "Aristide vient à la fête"

B : "Bérénice vient à la fête"

C : "Constance vient à la fête"

2) A et C sont incompatibles

B et C sont incompatibles

A et B sont indépendants

4) L'événement "Aristide et Bérénice viennent tous les deux" s'écrit $A \cap B$

$$P(A \cap B) = P(A) \times P(B)$$
 car A et B sont indépendants
$$= \frac{1}{4} \times \frac{1}{4} = \frac{1}{16}$$

5) Soit M l'événement "aucun des trois amis ne vient", alors \overline{M} est "au moins l'un vient".

Ainsi : $\overline{M} = (A \cup B) \cup C$.

Or
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

= $\frac{1}{4} + \frac{1}{4} - \frac{1}{16} = \frac{7}{16}$

Donc
$$P(M) = 1 - P(\overline{M})$$

= $1 - P(A \cup B) - P(C)$ car C et $A \cup B$ sont incompatibles
= $1 - \frac{7}{16} - \frac{1}{4} = \frac{5}{16}$

6) Soit X la variable aléatoire qui compte le nombre de personnes qui viennent.

7)
$$E(X) = (0 \times \frac{5}{16}) + (1 \times \frac{10}{16}) + (2 \times \frac{1}{16})$$

= $\frac{12}{16} = \frac{3}{4}$

$$V(X) = E(X^2) - E(X)^2$$

$$= (0^2 \times \frac{5}{16}) + (1^2 \times \frac{10}{16}) + (2^2 \times \frac{1}{16}) - (\frac{3}{4})^2$$

$$= \frac{14}{16} - \frac{9}{16} = \frac{5}{16}$$
ou
$$= E((X - E(X))^2)$$

$$= (\frac{3}{4})^2 \times \frac{5}{16} + (\frac{1}{4})^2 \times \frac{10}{16} + (\frac{5}{4})^2 \times \frac{1}{16} = \frac{5}{16}$$

- 6) A, B et C sont indépendants.
- 8) On répète sur 3 personnes et de façon indépendante une expérience de Bernoulli (1 "venir" / 0 "ne pas venir") ayant une probabilité 0.25 de venir. La loi de probabilité de la variable aléatoire T qui compte le nombre de personnes qui viennent est donc une loi $\mathcal{B}in(3,0.25)$. Elle est donnée par le tableau suivant :

9)
$$E(T) = 3 \times \frac{1}{4} = \frac{3}{4}$$

 $V(T) = 3 \times \frac{1}{4} \times \frac{3}{4} = \frac{9}{16}$

Exercice 2:

1) Notons les événements :

M : "travailler le matin" AM : "travailler l'après-midi" N : "travailler la nuit"

et A: "être absent".

Alors

$$P_M(A) = 0.04$$
 $P(M) = 0.4$
 $P_{AM}(A) = 0.08$ $P(AM) = 0.4$
 $P_N(A) = 0.22$ $P(N) = 0.2$

2) On cherche P(A).

M, AM et N forment une partition de Ω , on utlise la formule des probabilités totales :

$$P(A) = P_M(A) \times P(M) + P_{AM}(A) \times P(AM) + P_N(A) \times P(N)$$

= 0.04 \times 0.4 + 0.08 \times 0.4 + 0.22 \times 0.2
= 0.092

- 9.2% d'absentéisme.
- 3) On cherche $P_A(M)$.

D'après la formule de Bayes, on a :

$$P_A(M) = \frac{P_M(A) \times P(M)}{P(A)}$$

= $\frac{0.04 \times 0.4}{0.092}$
= 0.1739

4) On cherche $P_{\overline{A}}(M)$.

D'après la formule de Bayes, on a :

$$P_{\overline{A}}(M) = \frac{P_M(\overline{A}) \times P(M)}{P(\overline{A})}$$
$$= \frac{0.96 \times 0.4}{0.908}$$
$$= 0.4229$$

5) On cherche $P_{M \cup AM}(A)$.

$$P_{M \cup AM}(A) = \frac{P_A(M \cup AM) \times P(A)}{P(M \cup AM)}$$

$$= \frac{(P_A(M) + P_A(AM)) \times P(A)}{P(M) + P(AM)}$$

$$= \frac{(0.1739 + 0.3478) \times 0.092}{0.8}$$

$$= 0.06$$

car
$$P_A(AM) = \frac{P_{AM}(A) \times P(AM)}{P(A)} = \frac{0.08 \times 0.4}{0.092} = 0.3478$$

Exercice 3:

$$X \sim \mathcal{N}(\mu = 0.9, \sigma = 0.10)$$
 et $U = \frac{X - 0.9}{0.10} \sim \mathcal{N}(0, 1)$

1)
$$P(X > 0.75) = P(U > \frac{0.75 - 0.9}{0.10})$$

= $P(U > -1.5)$
= 0.933

2)
$$P_{X<0.9}(X > 0.75) = \frac{P(X > 0.75 \cap X < 0.9)}{P(X < 0.9)}$$

= $\frac{P(0.75 < X < 0.9)}{P(X < 0.9)}$
= $\frac{0.933 - 0.5}{0.5}$
= 0.866

3)
$$P_{X>0.9}(X>1) = \frac{P(X>1 \cap X>0.9)}{P(X>0.9)} \operatorname{car} P(X>1) = P(U>1) = 0.1587.$$

$$= \frac{P(X>1)}{P(X>0.9)}$$

$$= \frac{0.1587}{0.5}$$

$$= 0.3174$$

4) On cherche v_1 telle que : $P(X < v_1) = 0.1$ ou encore $P(U < \frac{v_1 - 0.9}{0.1}) = 0.1$ Donc

$$\begin{array}{lll} \frac{v_1-0.9}{0.1} & = & -1.2816 \\ \text{d'où} & v_1 & = & 0.9-0.1\times1.2816 \\ & = & 0.7718 \end{array}$$

5) On cherche
$$v_2$$
 telle que : $P(X>v_2)=0.1$ ou encore $P(U>\frac{v_2-0.9}{0.1})=0.1$
D'où $v_2=0.9+0.1\times 1.2816=1.02816.$

6) L'intervalle $[v_1; v_2]$ a pour probabilité 0.8

7)
$$P(X > 1.2) = P(U > \frac{0.3}{0.1})$$

= $P(U > 3)$
= 0.00135

Ils se trompent 1.35 fois sur 1000!